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Emerging infectious diseases frequently originate from patho-
gen spillovers from wildlife to humans1; contributing factors 
include forest fragmentation, habitat destruction, agricultural 

expansion, concentrated livestock production and human penetra-
tion into wildlife habitats2–5. However, a quantitative analysis of the 
nexus between ongoing land-use changes and the emergence of new 
zoonotic diseases is still missing5,6.

Genomic sequencing of severe acute respiratory syndrome  
coronavirus 2 (SARS-CoV-2) has shown that the virus is closely 
related (~96%) to a strain present in horseshoe bats7, but it  
is still unclear whether the spillover of SARS-CoV-2 occurred 
directly from bats to humans or through an intermediate species. 
For example, a strain of coronavirus very similar to SARS-CoV-2 
was detected in Malayan pangolin (Manis javanica)8, a wild mam-
mal that is frequently illegally smuggled from Southeast Asia into 
China and sold in markets8. Regardless of the specific pathway, 
the pathogen flow of emerging zoonotic diseases to humans is 
the result of human interactions with wildlife. We argue that the 
increasing incidence of emerging disease outbreaks is the result of 
a similar set of drivers able to change the distance and contact rates 
between wildlife and humans (as well as human–human interac-
tion). Population growth, urbanization, increasing affluence in 
middle-income countries and the associated dietary shifts9–11, 
including increased demand for animal products, are driving agri-
culture expansion and changes in animal husbandry—often at the 
expense of natural ecosystems12,13. Intensive livestock production 
keeps a large number of animals—often immunosuppressed, with 
low genetic diversity and in poor conditions—in close proximity to 
one another, making them vulnerable to the emergence and spread 
of epidemics3,14,15.

Human encroachment into wildlife habitat favours the interac-
tion between humans and wildlife species, either directly through 
activities such as hunting or indirectly through other species,  
particularly livestock that are in closer contact with humans16–19. 

The establishment of pastures, plantations or intensive livestock 
farms close to forest margins may increase pathogen flow from 
wildlife to humans17,19–21. Deforestation and forest fragmentation 
reshape the dynamics of wildlife communities, possibly leading  
to the extinction of habitat-specialist species while allowing  
generalists to thrive22. Wildlife species that are hosts of patho-
gens have been found to be relatively more abundant in managed  
landscapes (for example, agro-ecosystems and urban areas)  
than in adjacent undisturbed sites—particularly in the case of 
bats and other mammal species23. Among the four coronavirus 
genera, two (α and β coronaviruses) are found in bats, including 
the SARS-related CoVs (SARSr-CoV)24–27. For example, SARS 
and swine acute diarrhoea syndrome coronavirus (SADS-CoV) 
emerged in southeast China and were later detected in horse-
shoe bats, mainly Rhinolophus sinicus and Rhinolophus affinis7,24. 
SARSr-CoVs in China are most similar to the highly pathogenic 
human SARS-CoVs7,24.

Links between land-use change and the emergence of the 
COVID-19 pandemic have been hypothesized but have yet to be 
supported by a comprehensive high-resolution analysis of land-use 
patterns that combines forest fragmentation with agricultural 
expansion, livestock production and human encroachment into 
wildlife habitats21. Here we analyse environmental and land-use 
changes to identify locations at risk for SARS-related coronavirus 
outbreaks1,21 and relate such outbreak risks to ongoing agricultural 
production trends and dietary shifts. We analyse a set of factors  
that make a location suitable for the spillover to humans to occur.  
To that end, while we do not specifically link environmental  
change or bats as the immediate hosts of the SARS-CoV-2 ances-
tor7,8, we use horseshoe bats in the genus Rhinolophus (family 
Rhinolophidae) as a model system to understand the risk of future 
coronavirus outbreaks because China and Southeast Asia are 
reported to be regions with both highly diverse horseshoe bats and 
bat SARS-like CoV24.
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Results
Unfortunately, the location of the first infection events of SARS-like 
CoV in humans is not known. Therefore, we performed our 
local analyses at horseshoe bat locations in China (Fig. 1a and 
Supplementary Table 1) and within horseshoe bat distributions in 
both the larger region including South, East and Southeast Asia 
(and additionally in Western Europe and North Africa) and then 
in China. Within these distributions we generated 10,000 random 
sampling points (Fig. 1a). Within 30 km from every random sam-
pling point we calculate livestock density (number per km2), forest 
cover and fragmentation, cropland cover, population density, and 
the fractional cover of human settlements (Supplementary Figs. 
2–7). Hotspots were calculated (Fig. 1a) using the Getis–Ord algo-
rithm to show where the areas with high or low values of land-use 
attributes cluster (Fig. 2).

Within the large region analysed, China exhibits a relatively high 
concentration of livestock production in horseshoe bat distributions 
(Fig. 1a and Supplementary Table 1). Indeed, China is a hotspot of 
livestock density within this region (Fig. 1b), with statistically sig-
nificant higher concentrations of chickens, ducks, pigs, goats and 
cattle than exist outside China (Fig. 2a). Within a 30 km radius from 
observed bat locations the density of chicken, ducks, pigs, goats and 
cattle was again significantly greater than randomly selected loca-
tions outside China. Conversely the sheep density is lower in China, 

although sheep density was low overall, as it was for other rumi-
nants. The density of chickens, pigs, goats and cattle surrounding 
(<30 km) the points where these bats were recorded and at the ran-
domly selected locations in China within the suitability region were 
not significantly different, indicating that these random locations 
have livestock densities that are representative of the areas in which 
the actual presence of horseshoe bats has been documented.

Forest cover and fragmentation have been related to virus out-
breaks from wildlife (including bats) for other zoonotic diseases 
such as Ebola virus disease2. China exhibits on average lower forest 
cover and cropland density and greater forest fragmentation than 
the other regions analysed (Fig. 1c). The average forest cover and 
forest fragmentation in the surroundings (within 30 km distance) of 
random points selected in China and the other regions (Figs. 1a and 
2b) show that these differences are statistically significant. Likewise, 
statistically significant differences (that is, lower average cover and 
higher average fragmentation) are found between the points of 
actual observations of horseshoe bats and randomly selected loca-
tions in the regions outside China within the distributions of these 
bats (Fig. 2b).

China also exhibits higher levels of human presence in horseshoe 
bat distributions, as evidenced by population density and the frac-
tion of the landscape covered by villages, towns and other human 
settlements (Fig. 2c). Indeed, the region of China suitable for horse-
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Fig. 1 | univariate spatial analysis of coronavirus outbreak drivers. a, Sampling points randomly generated within and outside China and bat location 
points, weighted by the horseshoe bat species distributions present in East, South and Southeast Asia. b, Hotspots (red) and coldspots (blue) of livestock 
density. c, Hotspots of forest fragmentation. d, Hotspots of human settlement. Hotspots are based on the Getis–Ord G∗

i  statistic and classified according 
to their two-tailed significance levels, corresponding to those of a standard normal distribution. Basemap adapted from IUCN Red List database (https://
www.iucnredlist.org/search). Map projection EPSG:3395 WGS84/World Mercator.
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shoe bats coincides with hotspots of human settlements (Fig. 1d). 
Collectively, these results demonstrate that China exhibits stronger 
signs of human encroachment, livestock density and forest dis-
turbance of SARSr-CoV-hosting horseshoe bat distributions than 
other regions. In China, regions close to forest fragments are more 
densely used for livestock production and human settlements—and 
consequently exhibit lower forest and cropland cover (Fig. 1b)—
thereby favouring the contact between wildlife and humans either 
directly or through intermediate animals such as livestock. The fact 
that China is a global hotspot in the concurrence of these three 
factors (fragmentation, livestock density and human settlement) 
is highlighted by the multivariate hotspot analysis (Fig. 3). These 
three attributes account for bat habitat (fragmentation), livestock 
and human presence, which are major factors contributing to the 
spillover of zoonotic infectious diseases3. Interestingly, we find that 
China is the global hotspot of simultaneously high forest fragmen-
tation, livestock density and human settlement. The other major 
global hotspots outside China are found in Java, Bhutan, east Nepal, 
northern Bangladesh, the state of Kerala (India) and northeast  
India, of which the Bangladeshi and northeast India regions are 

known for past outbreaks of Nipah virus, another bat-related zoo-
notic disease28.

We then use the multivariate hotspot framework to identify 
regions at high potential risk of SARSr-CoVs spillovers to humans 
as a result of land-use change. To that end the results of the mul-
tivariate hotspot analysis were clustered into 30 groups, based on 
geographic contiguity and similarity in the above three attributes 
(Fig. 4 and Supplementary Table 3). We then perturbed one attri-
bute at a time in each group to evaluate that group’s susceptibil-
ity to transitioning from non-significant conditions (Fig. 3) to a 
hotspot state (Fig. 5). This sensitivity analysis (Fig. 5) shows areas 
at risk of transitioning to hotspots as a result of a future increase in 
at least one of the analysed attributes (that is, forest fragmentation, 
livestock density or human settlement). Interestingly the Chinese 
region south of Shanghai is at high risk of potentially turning into 
a hotspot as a result of fragmentation increase. Other regions sus-
ceptible to hotspot transition as a result of forest fragmentation 
include Japan and north Philippines. Likewise, the transition region 
between China’s hotspot and Indochina’s coldspot and the region 
surrounding the hotspot of Thailand could turn into hotspots for 
SARSr-CoV spillover as a result of increasing presence of livestock 
or humans, respectively (Fig. 5). These results point both to regions 
of the world currently suitable for SARSr-CoV spillover from wild-
life to humans as well as those at risk of becoming prone to spillover 
as a result of trajectories of land-use change and human penetration 
(Fig. 6 and Supplementary Fig. 8)

Discussion
Food systems are often related to human health via the impact of 
unhealthy diets on the emergence of chronic diseases. However, 
they can also affect human health more indirectly, through land-use 
changes induced by the increasing demand for food commodities 
such as meat or other animal products, a phenomenon known 
as the ‘livestock revolution’13. In many regions of the world live-
stock production growth has often led to agricultural expansion, 
forest destruction and the encroachment of cropland and inten-
sive livestock farms into disturbed wildlife habitat21. This study  
connected the dots between the risk of SARSr-CoV epidemics  
and land-use changes resulting from the increase in human  
population and intensive farming and from agricultural expan-
sion. Our approach uses horseshoe bats as a model family because  
of their key role as hosts of Sarbecovirus coronaviruses, which 
have caused SARS and COVID-19, and SADS7,20,22,24. Other  
strains of related viruses have been found in other bat genera, 
but these relationships are less clear24. The widespread sampling  
of other bats may find species-specific relationships, although  
horseshoe bats appear to be the reservoirs where most SARSr-CoVs 
have their evolutionary ancestors and so we assume they are  
the most appropriate models. The risk to humans from other coro-
naviruses, therefore, will be different, because their host distribu-
tions are different, and two CoV genera (γ and δ coronaviruses) 
are mostly bird viruses. Similarly, the potential intermediate or 
amplifying host, such as other wildlife (for example, pangolin) 
or livestock species might differ for different coronaviruses. Here  
we present the results for all livestock (except poultry), because,  
for example, while pigs are not reportedly susceptible to 
SARS-CoV29 and SARS-CoV-230, SARS-CoV and SARS-CoV-2 
have sporadically naturally infected numerous different ani-
mals and been shown experimentally to be able to infect others 
(for example, ref. 31 and references therein) and SADS-CoV has 
infected pigs multiple times20,32. SADS-CoV is a coronavirus related 
to Rhinolophus bat coronavirus HKU2, so we include pigs in our 
analyses. We do not include birds (poultry) in our main analyses 
(Figs. 1–6 and Supplementary Figs. 8), because there is no evidence 
of these coronaviruses in birds, but include poultry for compari-
son in the Supplementary Information (Supplementary Figs. 9–13). 
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Fig. 2 | Distribution comparison for coronavirus outbreak drivers. 
a–c, Average distributions of livestock (a), land cover and use (b) and 
human population (c) in areas that are likely to be suitable for horseshoe 
bat occurrence in China and in the rest of their distribution. Error bars 
correspond to the 20% and 80% sample percentiles. Different capital 
letters indicate statistically different samples according to Mann–Whitney 
tests with significance α = 0.05.
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Moreover, poultry and pigs have been associated with the spread of, 
for example, influenza viruses, and therefore it is also interesting to 
consider all livestock types.

The bat location data and species distribution data also suffer 
from different, but related, issues to the virus data. The bat location 
data are presence-only data. True absence data are difficult to obtain, 
and therefore we randomly sampled within different locations to 
generate pseudo-absence data. Choosing from where to sample 
from also presents difficulties, and therefore we chose horseshoe 
bat distribution data for species that existed within China and East, 
South and Southeast Asia. This presents further issues because the 
distribution of one species, the greater horseshoe bat (Rhinolophus 
ferrumequinum), encompasses Western Europe, North Africa, and 
Central and East Asia. We therefore weighted our sampling based 
on the number of overlapping species distributions to account for 
this. However, these species distributions are large polygons and 
the realized niches used within them by the species probably dif-
fer; therefore, better niche models using presence and, ideally, pres-
ence–absence data are required to develop better predictions of 
species presence33. However, our results for random locations in 
China and outside China and reported bat observations were com-
parable, suggesting the results were insensitive to these changes. 
Land-use change and climate change may change their distributions 
in the future. Here we limit our analyses to data reported since 2000, 
but future analyses may be needed to better capture location and 
distribution changes.

More generally, although we used relatively specific bat and virus 
relationships, we took a high-level approach to understand the more 

distal or ultimate (rather than proximal) causes of infectious dis-
ease emergence, linking environmental change and human drivers 
such as agricultural intensification. Different infectious diseases 
have different transmission mechanisms and life cycles, and not all 
will respond to such changes in the same way. For example, directly 
transmitted, acute infections with short incubation and infectious 
periods, such as SARSr-CoVs, will probably be dependent on hosts 
having greater densities, as in China, for them to emerge. The epi-
demic potential is also increased through local and global move-
ment and trade, either of people, wildlife or livestock16,34,35. Along 
with the biological properties of the virus and hosts, the true risk of 
both the initial cross-species transmission and epidemic potential 
is either increased or limited by more proximal mechanisms, such 
as biosecurity, health and safety measures that can reduce risk, even 
if the ultimate factors are present and increasing through the pro-
cesses of habitat fragmentation and human encroachment2,16.

Spillover of infectious disease such as SARS, COVID-19 and 
SADS from wildlife to humans probably requires the coexistence 
of horseshoe bats and humans in the same environment and is 
favoured by the presence of intermediate animal species, particu-
larly livestock because this is in closer contact with humans. The 
fragmentation and disturbance of forest ecosystems probably 
favours habitat-generalist bat species. This study demonstrates  
that in China these important factors responsible for reducing the 
distance between wildlife and humans co-occur both in horseshoe 
bat distributions and in the surroundings of actual documented bat 
occurrence. These results are consistent with the notion that popu-
lation growth and increasing meat consumption associated with 
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Fig. 3 | Multivariate spatial analysis of coronavirus outbreak drivers. The hotspot analysis is based on the average G∗

i  z score values for fragmentation, 
livestock (cattle, goats, pigs, sheep) density, and human settlements. Hotspots are classified based on their two-tailed significance levels, corresponding to 
those of a standard normal distribution. Basemap adapted from the IUCN Red List database (https://www.iucnredlist.org/search).
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urbanization and economic growth have expanded the footprint of 
agriculture, leading to human encroachment in wildlife habitats and 
increased livestock density in areas adjacent to fragmented forest 
patches. China has dramatically increased animal consumption36, 
probably as the result of increasing affluence. In China, meat sup-
ply is largely reliant on domestic production using imported feed 
(for example, soy from the Americas)36, which explains the high 
livestock density in many rural areas, including those at the forest 
margins. Indeed, about 94% of meat consumption is contributed 
by domestic production (96% for pig meat, 92% for poultry, 94% 
for mutton and goat, 80% for bovine meat). Likewise, economic 
growth and the shift to diets richer in animal products explains 
the increasing demand for wild animal meat delicacies, increasing 
human–wildlife interactions through multiple pathways and the 
disturbance of forest habitat in more remote locations—frequently 
abroad—through trade-related connections37. China is also under-
going major urbanization trends, with a ~24.6 × 103 km2 increase in 
built-up land between 2010 and 2015 at the expense of cropland, 
woodland and grassland38. At the same time, China accounts for 
about 25% of recent global greening trends, largely from tree plan-
tations and forests39. Despite these greening trends, between 2000 
and 2018, the increase in forest cover was only a fraction of the for-
est loss (Supplementary Table 5). Moreover, tree cover increase does 
not necessarily go hand in hand with a reversal of fragmentation 
trends. For reforestation to reduce forest fragmentation it would 

need to take place within forest fragments and lead to a more con-
tinuous tree cover. Planting trees in discontinuous land patches has 
the effect of increasing forest fragmentation. In fact, when the forest 
gain that occurred between 2000 and 2018 was accounted for, we 
detected an even higher degree of forest fragmentation than with-
out considering the effect of forest gain (Supplementary Table 6 and  
Fig. 15). Moreover, it has been reported that in China tree planting 
often occurs with monocultures growing within forest fragments, 
thereby contributing to the persistence of fragmented habitats40.

The multivariate hotspot analysis highlights how China is the 
largest hotspot for the concurrence of high forest fragmentation, 
livestock density and human presence in our analysis (Fig. 3). 
The analysis does not prove any causal relationship between these 
land-use attributes and virus transmission to humans but highlights 
the existence of a remarkable co-dependence pattern among dif-
ferent risk factors in areas where horseshoe bats occur. While the 
distribution of horseshoe bats can be reshaped by climate change, 
the patterns identified by this study can be used to investigate 
the nexus between coronavirus emergence and land-use change. 
The sensitivity analyses identifying the possible transition to new 
hotspots in response to an increase in one of these attributes (Fig. 5)  
highlights areas that could become suitable for spillover and the type 
of land-use change that could induce hotspot activation. Therefore, 
this analysis highlights region-specific targeted interventions that 
are urgently needed to increase resilience to SARSr-CoV spillovers. 
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For instance, the green dots in Fig. 4 could be turned into hotspots 
as a result of forest fragmentation. In these regions resilience can 
be built through restoration efforts. Indeed, land-use change evalu-
ations should consider the risk of activating new hotspots suitable 
for wildlife-to-human spillover of pathogens such as SARSr-CoV, 
an aspect that has seldom been included in the impact analysis 
of land-use change. Likewise, other regions such as the China–
Indochina transition zone or central Thailand are prone to hotspot 
transitioning as a result of increased livestock density or urbanization,  
respectively. Here, mitigation of SARSr-CoV emergence can be 
enhanced by reducing livestock or human density, respectively, 
thereby reversing ongoing dietary and urbanization trends. Thus, 
environmental health is tightly connected to both animal and 

human health, as recently stressed by planetary and ‘one health’ 
discourses, which advocate for more holistic views of global health, 
encompassing environment, animals and people, and the interac-
tions among these factors41.

Methods
Bat location data. Most SARS-related CoVs are detected in horseshoe bats, 
although some strains have also been detected in other genera24–27. SARSr-CoVs in 
China are most similar to the highly pathogenic human SARS-CoVs24,42.

We restricted our local analyses of disturbance at bat locations to rhinolophid 
bats in China. We performed a Web of Science search on 10 April 2020 using the 
following Boolean operators: Rhinoloph* AND China AND Monitor* OR Survey 
OR Niche OR Distribution. We found 129 unique references. We removed all 
those published before 2000, reporting data outside China, review articles and 
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Fig. 5 | areas at risk of becoming hotspots as a result of changes in forest fragmentation (green), increase in livestock (cattle, goats, pigs, sheep) 
density (pink) and human settlement (purple). Light blue and red dots represent, respectively, multivariate coldspots and hotspots, whereas grey dots are 
neutral and not sensitive to perturbation in the attributes. Hotspots/coldspots are classified according to the two-tailed 95% significance levels of the G∗
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score, corresponding to those of a standard normal distribution. Basemap adapted from the IUCN Red List database (https://www.iucnredlist.org/search).
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non-English-language publications (specifically 23 Chinese-language publications), 
those with no rhinolophid data and those reporting only fossil records. We retained 
infection studies. This left 48 publications. We then further manually reviewed 
the publications for those reporting location data but more specifically those with 
latitude and longitude, leaving 17 publications and 264 observations (Fig. 1a and 
Supplementary Table 1).

Bat distribution data. We restricted our analyses of disturbance in bat 
distributions to rhinolophid bats in both the larger South, East and Southeast Asia 
region (but see the main text and ‘Results’ section) and then China. We searched 
the IUCN Red List database (https://www.iucnredlist.org/search) using Taxonomy: 
Rhinolophidae and Region: East Asia and South & South East Asia (hereinafter 
‘regional’) followed by Taxonomy: Rhinolophidae and Region: East Asia: China, 
Hong Kong & Taiwan (hereinafter ‘Chinese’) classifications and downloaded the 
shapefiles for the 55 regional and 22 Chinese Rhinolophus species present in the 
region. We consider these areas as regions of suitable habitat for Rhinolophidae. 
The extent of this study area exceeds 28.5 million km2.

Within these putative species distributions, we generated 10,000 random 
sampling points with a local sampling density that is proportional to the number of 
species whose distributions were reported at the point. Horseshoe bats are largely 
sedentary, foraging within a few kilometres (typically 1–5 km and nearly always 
<10 km) of their roosts; their roosts are ~13–90 km apart and they only travel 
20–60 km between winter and summer roosts (maximum recorded, 320 km)43,44. 
Therefore, for every random sampling point we consider a circular area of 30 km 
radius within which we calculate livestock density, forest cover and fragmentation, 
cropland cover, population density and the fractional cover of human settlements 
as explained below. The average values of these statistics are then calculated for 
China and the other regions of the world with habitat suitable for Rhinolophidae 
and compared and the difference is tested for significance using the Mann–
Whitney non-parametric test in Mathematica.

Livestock, forest cover and population data. We took livestock data from the 
GeoWiki database that provides georeferenced livestock counts (in number of 
animals per km2) at 1 km resolution for chickens, ducks, pigs, goats, sheep and 
cattle (https://livestock.geo-wiki.org/home-2/)45. We quantified human presence 
both in terms of population density at 1 km resolution and as a fraction of the 
landscape taken by villages, towns or other settlements from the WorldPop 
database at 1 km resolution. We used cropland data (at 30 × 30 m2 resolution)  
from ref. 46. Forest cover data are available at 30 m resolution annually between 
2000 and 201847. Forest cover is associated with the presence of trees taller than 
5 m. Forest loss or gain was determined as the difference in forest cover between 
these two years.

Data uncertainties and consistency. The Global Livestock of the World (GLW) 
maps at 1 km resolution were validated by Robinson et al.45 with overall satisfactory 
results for our study area, with observed–simulated correlations ranging between  
a minimum of 0.54 for ducks in Australia to a maximum of 0.81 for ducks and  
pigs in Asia.

Gilbert at al.48 presented a new version of the GLW at a lower resolution 
(~10 km at the equator instead of 1 km) to avoid misinterpretations in local 
analyses. We checked the robustness of our analysis with respect to the different 
spatial resolution of GLW maps by computing the linear correlation between 
hotspot and coldspot results obtained with the two inputs (Supplementary Fig. 14). 
We obtained values higher than 0.95 for all species except poultry and higher than 
0.80 for poultry, and chose to employ the high-resolution maps because they are 
better suited for the type of analysis performed in this study.

The authors of the other datasets used for our analysis reported an accuracy 
greater than 95% for forest data47 and 91.7% for cropland data49, ranging, for the 
tiles including the study area, from 88.6% in Southeast Asia to 94% in China. The 
framework used by WorldPop to compute the built settlement maps is explained 
in Nieves et al.50. Validation results show a proportion of correctly predicted 
transition pixels ranging from 0.79 in Vietnam to 0.997 in Switzerland.

We checked for the consistency of cropland and settlement data against the tree 
cover data. Forest covers 25.2% of the study area; settlements and croplands cover 
7.4% and 34.2% of the study area, respectively. Overall, 95.8% of the area classified 
as settlements and 96.2% of the area classified as cropland fall within areas not 
classified as forest. The overall consistency, calculated as the unambiguously 
classified share of the study area, is 98.7% between the maps of tree cover and 
croplands and 99.7% between tree cover and settlements. More detailed results of 
the consistency analyses are found in Supplementary Table 4.

Forest fragmentation analyses. We performed a forest fragmentation analyses 
based on Vogt et al.51 using the 30 m forest cover data. This method distinguishes 
forest cores from forest margins and patches. Every 30 m pixel is classified as 
wooded or non-wooded, based on whether its tree cover was greater or smaller 
than 50% in the year 2018. Forest cores are wooded pixels that are not adjacent 
to non-wooded pixels. Conversely, forest patches are made of wooded pixels 
that are not adjacent to forest core pixels. Wooded pixels that are neither core 
nor patch pixels occur at the margins of forest cores. Forest fragmentation 

was then quantified in terms of a composite fragmentation index2, defined 
as the ratio between the sum of number of pixels classified as ‘margins’, 
‘patches’ or smaller core areas (that is, <200 ha), and the total number of pixels 
(wooded + non-wooded) in the 30 km circles used to characterize land cover 
and land use in the surroundings of the points of actual bat observations or the 
randomly generated points. This index ranges between 0 and 1.

Hotspot analyses and multivariate clustering. We then used two different 
methods to generate a multivariate distribution for the three indicators (livestock 
density, forest fragmentation and human settlements). First, we averaged their 
G∗

i . Since the G∗

i  is a z score, that is, it has a standard normal distribution, a linear 
combination of the three G∗

i  indicators, such as their average, is a standard normal 
distribution and can still be represented with the same significance levels (Fig. 2). 
Second, we performed a spatially constrained multivariate clustering analysis. A 
minimum spanning tree from the connectivity graph of the features was built, and 
then the SKATER (Spatial ‘K’luster Analysis by Tree Edge Removal) clustering 
method was used52. SKATER iteratively cuts branches in the minimum spanning 
tree, based on data variability among and within groups and on a spatial constraint, 
until it reaches the user-defined number of groups. The spatial constraint defined 
here is a ‘k nearest neighbours’ type with eight neighbours, meaning each feature 
in a group must have at least one of its eight nearest neighbours in the same group. 
We chose 30 as the number of groups, calculated a set of summary statistics and 
boxplots for the groups and compared them to their global values (Supplementary 
Table 2). For each indicator, we calculated the R2 value as the reduction in variance 
of the indicator obtained by grouping, divided by the original variance of the 
indicator (Supplementary Table 2). While the modularity analysis based on pseudo 
F-statistics shows that the optimal number of groups (the maximum differences 
between groups while maximizing within-group similarity) is 12, here we studied 
30 groups to analyse distinct regional patterns. Having a greater number of groups 
allows us to identify groups that are susceptible to transitioning to a hotspot 
because they are not ‘too different’ from hotspots.
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