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Watching another person in pain activates brain areas involved in the sensation of our

own pain. Importantly, this neural mirroring is not constant; rather, it is modulated by our

beliefs about their intentions, circumstances, and group allegiances. We investigated if

the neural empathic response is modulated by minimally-differentiating information (e.g.,

a simple text label indicating another’s religious belief), and if neural activity changes

predict ingroups and outgroups across independent paradigms. We found that the

empathic response was larger when participants viewed a painful event occurring to

a hand labeled with their own religion (ingroup) than to a hand labeled with a different

religion (outgroup). Counterintuitively, the magnitude of this bias correlated positively

with the magnitude of participants’ self-reported empathy. A multivariate classifier, using

mean activity in empathy-related brain regions as features, discriminated ingroup from

outgroup with 72% accuracy; the classifier’s confidence correlated with belief certainty.

This classifier generalized successfully to validation experiments in which the ingroup

condition was based on an arbitrary group assignment. Empathy networks thus allow

for the classification of long-held, newly-modified and arbitrarily-formed ingroups and

outgroups. This is the first report of a single machine learning model on neural activation

that generalizes to multiple representations of ingroup and outgroup. The current findings

may prove useful as an objective diagnostic tool to measure themagnitude of one’s group

affiliations, and the effectiveness of interventions to reduce ingroup biases.
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INTRODUCTION

Neuroimaging reveals that watching another person in pain activates brain areas involved in the
sensation of our own pain (Singer, 2004; Botvinick et al., 2005; Hein and Singer, 2008; Valeriani
et al., 2008; Jacoby et al., 2016). Importantly, this neural mirroring is not constant; rather, it
is modulated by our beliefs about their intentions, circumstances, and group allegiances. For
example, there is a diminished response in this empathy network for pain if the observer believes
the pain-recipient has acted unfairly in a simple economic exchange (Singer et al., 2006). A
similar reduction occurs when the observer is told that the victim is receiving a large monetary
compensation for undergoing the pain (Guo et al., 2011).
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Modulation of empathy-associated activity occurs with group
distinctions, as well. A larger activation for ingroups (vs.
outgroups) has been demonstrated in the context of sports
teams (Hein et al., 2010; Cikara et al., 2011), and racial
identity (Xu et al., 2009; Azevedo et al., 2013; Contreras-
Huerta et al., 2013). Generally, this ingroup bias translates
into actions: neural activation in empathy-related areas predicts
prosocial action (Hein et al., 2010; Christov-Moore and Iacoboni,
2016). Thus, understanding and quantifying these biases has
important practical considerations, from jury decision-making
to group profiling to genocides. However, it is unknown
whether differences in low-level empathic biases are induced by
ingroup/outgroup distinctions more generally, and how fluidly
they can change.

In the current experiments, we sought to evaluate: (1) whether
brain responses in empathy-associated areas differ between
minimalistic representations of religious ingroups and religious
outgroups, (2) whether the observed brain responses are related
to self-reported empathy, (3) if multivariate brain responses
reliably predict participants’ ingroup and outgroup conditions,
and (4) whether these differential empathic responses extend to
loose and arbitrary ingroup and outgroup categories.

MATERIALS AND METHODS

Participants
We recruited 135 participants (29 ± 9 years, 63 males, 108
right-handed) with normal or corrected-to-normal vision. We
used flyers posted around the greater Houston area (e.g., police
stations, fire stations, and community centers) to recruit a
wide range of participants. This recruiting approach successfully
captured a diverse group with varied backgrounds. Participants
were compensated for their time.

Data from 8 participants were excluded due to errors on MR
image acquisition or reconstruction, and 22 participants were
excluded from analysis due to excessive head motion (absolute
mean displacement > 3.0mm), leaving 105 participants in total
for analysis. Of these 105 participants, 67 participants were used
in Experiment 1, and a subset of 14 of those participants were
used in Experiment 2. Separately, 14 participants were involved
in Experiment 3. Importantly, 24 participants were involved in
Experiment 1 or Experiment 2, but their data were not used in
the ingroup/outgroup analyses, as they professed their religion
to be agnostic. All 105 participants underwent the baseline block
(see below) with neutrally-labeled hands, and their data were
used in the functional localization of the empathy and relief
networks. However, there was no overlap in participants between
the three experiments; thus, the three ingroup/outgroup analyses
were independent.

Participants were told they were being recruited for a study
on the relationship between pain and memory. The study
was classified as deceptive research since our true interest—
understanding the neural empathic response—was not disclosed
to participants. We conducted the collection of this data at
Baylor College of Medicine (BCM) while authors DAV, RRS, and
DME were (but no longer are) BCM employees. The study was
approved by the BCM Institutional Review Board (IRB), as the
protocol was deemed to be of no potential harm. Each and all

subjects read, agreed to, and signed a written consent form, which
was also reviewed and approved by the BCM IRB.

Behavioral Questionnaires
First, we asked participants to declare their religious belief as
specifically as possible (including “agnostic” or “atheist”). The
participants’ self-reported religious affiliations were distributed as
follows: 24 agnostics, 11 atheists, 49 Christians, 4 Hindus, 2 Jews,
1 Muslims, 0 Scientologists. Next, participants completed a brief
survey that quantified empathy (Mehrabian, 1996)—Balanced
Emotional Empathy Scale (BEES)—and degree of religious
conviction. The religious conviction scale was adapted to map
onto a portion of Richard Dawkins’ 7 point scale, replacing
“religion” by “religious belief” (Dawkins, 2008). A value of 1–4
on his scale corresponds to 0–3 on our scale; thus the 0 on our
modified scale corresponds to complete uncertainty in a religious
belief and 3 to complete certainty. A Christian who identifies
culturally but not ideologically might respond with a 0, while a
completely certain atheist would respond with a 3. Participants’
mean response score on this metric was 2.85± 0.99.

Stimuli
All stimuli were programmed in MATLAB (The Mathworks Inc.,
Natick, USA) with PsychToolbox (Brainard, 1997). Participants
viewed the stimuli on a back-projected screen while lying supine
in the scanner (see Supplementary Movie M1).

Baseline Block
Using blood-oxygenation level dependent (BOLD) signal from
functional magnetic resonance imaging (fMRI), we implemented
a simple functional localization paradigm to identify regions
involved in pain-related empathy. During each of 12 trials in this
baseline block, a participant saw 6 hands appear on the screen
(labeled neutrally as “Hand #1,” “Hand #2,” etc.). Each hand was
similar in skin tone as well as apparent age and differentiated
from others by an arbitrarily-assigned bracelet and text label that
was intended to give each hand a unique identity. Two to four
seconds later, one hand was selected randomly by the computer,
indicated by the addition of a red border around the image. After
6 s, the selected image moved into the middle of the screen and
became a 2.3 s video of that hand being stabbed with a needle
(baseline stab), or, alternatively, touched with a cotton swab
(baseline touch) (Figure 1A, Figure S1, Supplementary Movie
M1). During each trial the position of these hands on the screen
was randomized. The text label remained with the hand to which
it was assigned.

Because each participant saw multiple stab and touch trials in
the course of an experiment, we filmed stabbing and touching
events from six different angles to reduce desensitization. In most
versions of the experiment, except as noted below, participants
began by observing 6 stab trials and 6 touch trials; the contrast
of these baseline conditions served as a functional localizer for
us to define the empathy and relief networks operationally.
Observations were separated by a blank screen of at least 8–12 s
(the inter-trial interval). The display position of each hand and its
associated text label was shuffled for each trial. Participants then
were assigned to one of three experimental conditions, which
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FIGURE 1 | Localizing empathy. (A) In each trial, hands appeared with impartial text labels. The computer selected a hand, and that hand received either a stab or a

touch. (B) Whole brain contrasts of baseline stab>baseline touch and baseline touch>baseline stab yielded 6 and 7 significant clusters, respectively (p < 0.05 FWE)

shown here in MNI coordinates from −12mm to 58mm in 14mm increments.

were identical in structure, but different in the construction of
ingroup and outgroup conditions.

EXPERIMENT 1: INGROUP vs. OUTGROUP

For the remainder of the experiment, religious group labels were
presented above each hand, replacing the previous impartial text
labels (Figure 2A). The following 60 trials were identical to the
baseline block with the exception of religious hand labeling. For
each participant, the religious labels were assigned randomly to
the hands, but once assigned, remained with the same hands for
the duration.

EXPERIMENT 2: FLEXIBILITY

In Experiment 2, we studied the influence of making a former
religious outgroup member more closely connected with an
ingroup through an alliance. We assigned the six religions
arbitrarily to two groups of three hands: the green team and
the blue team (Figure 3D top). A text box said that three of the
religions were now at war with the three other religions. The
outgroup religions that were on the same team as one’s own
ingroup religion were considered allies.

EXPERIMENT 3: ARBITRARY TEAMS

In Experiment 3, participants were assigned randomly to one
of two fictional groups (the Augustinians and the Justinians)
before the fMRI portion of the experiment began. Specifically,
participants began by tossing a coin: heads would assign a
participant to one team and tails to the other. The assignment
relationship was thus randomized across participants, who knew
that the assignment was arbitrary. They were next handed a

bracelet for their team (either Augustinian or Justinian), which
they were instructed to wear. This was intended both to remind
them of their team and bond them to it. Aside from the
new affiliations, the paradigm was identical to Experiment 1
(Figure 3D bottom).

Behavioral Response
In each experiment, participants were told that the purpose
of the study was to examine the effects of pain on memory.
They therefore believed they were watching labeled hands being
stabbed to see how the presence of pain helped them to remember
which hand had been selected on any given trial. To buttress
this impression (as well as to quantify alertness), we asked
participants on a random 20% of trials to report which religion
was associated with the selected hand 10–14 s after the trial. All
participants had performance above 80%.

MR Image Acquisition
Data were acquired on a Siemens 3T Trio (Erlangen, Germany)
scanner. First, high resolution T1-weighted scans were acquired
using an MPRage sequence (0.4785 × 0.4785 × 1.0mm voxels).
Functional image acquisition details were as follows: echo-planar
imaging, gradient recalled echo; repetition time (TR)= 2,000ms;
echo time (TE) = 40ms; flip angle =90◦; 64× 64 matrix, twenty
nine 4mm axial slices, yielding functional 3.4 × 3.4 × 4.0mm
voxels, one∼30min run.

Preprocessing
fMRI data processing was carried out using FEAT (FMRI Expert
Analysis Tool) Version 6.00, part of FSL 5.0.9 (FMRIB’s Software
Library, www.fmrib.ox.ac.uk/fsl). The first two volumes from
every participant’s functional run were discarded. We applied
the following pre-statistics processing: motion correction using
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FIGURE 2 | Religious labels modulate empathic neural response. (A) Experiment 1 was identical in structure and timing to the baseline block but used religious labels

instead of impartial labels. (B) When a participant saw their ingroup, in comparison to their outgroup, stabbed or touched, neural activation was significantly higher in

the empathy network (**p < 0.01 corrected) and relief network (**p < 0.01 corrected, repeated measures ANOVA, paired data, n = 67 participants). (C) Participant

scores on the Balanced Emotional Empathy Scale (BEES) correlated with their ingroup – outgroup bias in the empathy network. (D) A whole-brain ingroup>outgroup

contrast yielded three significant regions: the mPFC, PCC/precuneus, and pSTS/TPJ (p < 0.05 FWE). These areas are involved in cognitive empathy and perspective

taking; we refer to them collectively as the mentalizing network. The mentalizing network right pSTS is more medial than the relief network right pSTS cluster. No

significant voxels appeared in the contrast outgroup>ingroup.

MCFLIRT (Jenkinson et al., 2002); slice-timing correction using
Fourier-space time-series phase-shifting; non-brain removal
using BET (Smith, 2002); spatial smoothing using a Gaussian
kernel of FWHM 5mm; grand-mean intensity normalization of
the entire 4D dataset by a single multiplicative factor; highpass
temporal filtering (Gaussian-weighted least-squares straight line
fitting, with sigma = 30 s). All first level analyses and model
fitting were conducted in the functional space.

For group level analyses, we registered parameter estimates
and contrasts of beta weights to the MNI152 template brain.
Registration to high-resolution structural images was carried out
using FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002)
(full-search, boundary based registration, or BBR). Registration
from high resolution structural to standard space was then
further refined using FNIRT nonlinear registration (Andersson,
2007a,b) (full-search, 12 DOF, warp resolution 10mm).

GLM Analysis
We fit a general linear model (GLM) to each participant’s
time-series data using FSL FILM (FMRIB’s improved linear
model) with local autocorrelation correction (Woolrich
et al., 2001). Six standard motion regressors and individual
motion outlier (RMS intensity difference to middle volume,
fsl_motion_outliers) regressors were added to the model. For
each trial condition (baseline, ingroup, outgroup, arbitrary
ingroup, arbitrary outgroup, and/or ally), a set of regressors
were included for stab and touch trials separately, corresponding
to the onset of the video of the hand being stabbed or
touched. In addition, a regressor for hand selection for each
condition was included, corresponding to the time when the
particular hand was selected. We also included regressors
marking the trial onset across all trials, the times at which
questions were asked, and the times at which buttons were
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FIGURE 3 | A multivariate classifier discriminates ingroup from outgroup reliably in multiple paradigms. (A) The ROC curve for distinguishing the ingroup conditions

from the outgroup conditions. The AUC was 68%, which was significantly greater than the chance AUC of 50% (p < 0.01, n = 268 instances, 100 chance curves

shown). (B) Participants’ self-reported certainty of religious beliefs (scale from 0 to 3) correlated significantly with classifier prediction confidence, suggesting that the

strength of an ingroup affiliation may be dependent on certainty. (C) The classifier feature weights in the 14 non-visual regions of the empathy (purple), relief (green),

and mentalizing (yellow) networks. Translucent gray bars represent the 95% chance interval, and stars demarcate weights that contributed significantly (p < 0.05

uncorrected). (D) Top: Experiment 2 was identical in structure to Experiment 1 except that participants were told that the hands were on two warring teams. The ally

condition is an outgroup on the same team as the participant’s ingroup. Bottom: Participants flipped a coin to receive an arbitrary assignment to one of two teams,

Justinian or Augustinian, thus defining their arbitrary ingroup condition. (E) The ROC curves for distinguishing the ingroup condition from the outgroup condition in the

two validation paradigms. The classifier determined 64 and 71% of participants’ ingroup condition correctly in Experiment 2 (pink) and Experiment 3 (maroon),

respectively.

selected for the answers. For each regressor, we fit a temporal
derivative regressor to allow for slight offsets of peak timings.
The durations of each each event were modeled as impulses
(0.1 s).

Group Analysis
First, we identified the empathy and relief networks by
contrasting the initial 6 stab trials with the initial 6 touch trials
(baseline stab—baseline touch, Figure 1B). We used FSL FEAT
mixed effects modeling (FLAME 1) with outlier deweighting for
the group-level contrasts.

Next, we used whole brain search to identify regions outside
of the empathy network that responded more when the ingroup
handwas stabbed painfully. Again, we used FLAME 1with outlier
deweighting for the group-level contrasts ingroup-outgroup.
Contrasts between ingroups and outgroups were conducted
on all participants who had definable ingroups and outgroups
(n = 67; agnostics were excluded since they had no ingroup).
All univariate statistics were corrected for multiple comparisons
using Family-wise error (FWE) (Woo et al., 2014).

Note that we chose not to analyze results by the specific
religious groups, but instead by looking at ingroup and outgroups
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only (irrespective of the religion of the individual participants).
Our choice stemmed from the risk of poor or politically-
motivated interpretations that could arise erroneously from
insufficient statistical power.

Multivariate Classification
We implemented an L2-logistic regression classifier to distinguish
participants’ ingroup condition from their outgroup condition,
using BOLD signal change in selected ROIs as predictive features.
To rule out a classification based on label text (Petersen et al.,
1990; Cohen et al., 2000; McCandliss et al., 2003), we did not use
visual areas from the Harvard-Oxford atlas (Frazier et al., 2005;
Desikan et al., 2006; Makris et al., 2006) as features.

We trained the classifier on ingroup vs. outgroup (Experiment
1) using the 11 non-visual ROIs from the empathy and
relief networks (derived from our GLM analysis) as predictive
features. We did not include the mentalizing network (see
Experiment 1 results) because it was derived from the contrast
ingroup-outgroup and therefore was non-independent from
the classification. We assessed performance using leave-one-
participant-out cross validation (Figure S10A).We then retrained
the classifier on the Experiment 1 data, this time including the
empathy, relief, and mentalizing network ROIs as features, and
applied it to the validation sets: ally vs. outgroup (Experiment 2)
and arbitrary ingroup vs. arbitrary outgroup (Experiment 3).

We used each stimulus condition (stab and touch) as a
separate instance for the classifier, yielding 4 instances per
participant in all ingroup vs. outgroup classifications. In the
Experiment 1 ingroup vs. outgroup classification, each participant
had the following instances: ingroup touch, ingroup stab, outgroup
touch, and outgroup stab (67 participants × 4 instances = 268
instances). In the Experiment 2 ally vs. outgroup classification,
each participant had the following instances: ally touch, ally
stab, outgroup touch, and outgroup stab (14 participants × 4
instances = 56 instances). In the Experiment 3 arbitrary ingroup
vs. arbitrary outgroup classification, each participant had the
following instances: arbitrary ingroup touch, arbitrary ingroup
stab, arbitrary outgroup touch, and arbitrary outgroup stab (14
participants× 4 instances= 56 instances).

We used the standardmetric—receiver operator characteristic
(ROC) area under the curve (AUC)—as the statistic of interest
for measuring the performance of the classifier (Swets, 2014).
All classifications were between two classes with equal numbers
of instances and thus chance AUC was 50%. To assess the
significance of our predictions, we used standard permutation
testing to build the null distribution: how well our models
might have performed purely by random chance (Good, 2013).
In each statistical case, we did the following: we shuffled
the outcome across participants so there was no relationship
between the potentially predictive features and the condition
(Figure S10B). We then conducted the same process of training
and validation on these permuted datasets. We repeated this
procedure for 20,000 unique permutations to estimate the
probability distribution of all our reported summary statistics
empirically. Said another way, we built an estimate for how
aspects of our model might have turned out, purely by random
chance. The p-value is the fraction of randomly permuted dataset

that resulted in an outcome equal to or more extreme than that
observed within the original data.

Each participant’s exemplars were brought into a common
space, separately, by demeaning their average activation.
Specifically, each participant’s average activation, (across all the
ingroup/outgroup conditions of interest) was subtracted from
each condition; thus, greater than 0 signified more activation
than their average, and less than 0 signified less activation than
their average (Figure S11A left and middle). We ascertained
maximum participant-level accuracy by averaging together stab
and touch instances in each class for each participant (Figure
S11A right), and then applying the classifier weights to those
values. For example, in Experiment 1, ingroup stab and ingroup
touch were averaged for each participant to form a single ingroup
instance; this was done likewise with outgroup. In each cross-
validation fold, the training model was applied to a participant’s
individual conditions (ingroup stab, ingroup touch, outgroup
stab, and outgroup touch) to assess AUC and, in parallel, to
ingroup and outgroup to assess accuracy (Figure S11B left). In
Experiments 2 and 3, there was no cross-validation and thus
the ingroup vs. outgroup model weights were applied, at once,
to each of the 14 participant’s average ingroup and outgroup
conditions (Figure S11B right). The reason for the averaging is
that classifier significance is best assessed on the rawest form
of the data, whereas averaging improves accuracy by reducing
noise.

Averaging each participant’s touch and stab trials together
for the ingroup and then for the outgroup conditions left
only 2 instances per participant: an ingroup and an outgroup
condition. Since they were both demeaned, they were the
negative of each other by definition, and summed to 0
necessarily. Consequently, there was one unique value only
per participant in this classification, which was precisely
what we were interested in testing: the classifier’s accuracy
(right or wrong) in predicting each participant’s ingroup and
outgroup. As a result, sensitivity was equal to specificity,
so the ROC curves were symmetric. We performed all
classifications in MATLAB using the LibLinear toolbox (Fan
et al., 2008).

Statistics
Unless otherwise indicated, scalar nonparametric tests
(permutation tests and bootstraps) were implemented with
20,000 iterations. Each test type was corrected for multiple
comparisons with the Holm-Bonferroni procedure (Holm,
1979): (i) the two (empathy and relief networks) repeated
measures ANOVAs (Figure 2B); (ii) the three correlations
(BEES vs. empathy network ingroup bias, classifier confidence
vs. certainty of religious beliefs, and baseline stab—baseline
touch in the empathy and relief networks) (Figures 2C, 3B,
Figure S3B); (iii) the three classifications (ingroup vs. outgroup,
ally vs. outgroup, arbitrary ingroup vs. arbitrary outgroup)
(Figures 3A,E). We list 95% confidence intervals for the mean
value of the statistic of interest in square brackets. All correlations
calculations are linear (Pearson) and non-Frequentist parameter
likelihoods are quantified by Bayes factor (BF).
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RESULTS

Localizing Empathy
Whole brain contrasts for baseline stab>baseline touch and
baseline touch>baseline stab yielded 6 and 7 significant neural
clusters of signal change, respectively (p < 0.05 FWE, Figure 1B,
Figure S2, Table S1). Consistent with previous findings, we
interpret the regions localized by baseline stab>baseline touch as
the empathy-for-pain network (henceforth simply the empathy
network); it contains both affective (insula / anterior cingulate)
and sensorimotor (lateral occipital, fusiform, supramarginal
gyrus) components (Decety, 2010; Hein et al., 2010; Lamm
et al., 2011; Zaki et al., 2012). The network we identified with
baseline touch>baseline stab has not been reported previously.
Within the context of the experiment, one interpretation is that
the touch translates to relief that the hand was not stabbed;
we therefore provisionally refer to this as the relief network.
This network comprised the left inferior frontal gyrus, right
middle frontal gyrus, right posterior insula, precentral gyrus,
precuneus, bilateral posterior superior temporal sulci (pSTS),
and bilateral angular gyri. Several of the regions in both
networks have been implicated in neural resonance experiments
(Iacoboni et al., 1999), and shared representation paradigms
(Lawrence et al., 2006; Lamm et al., 2007). Across participants,
the responsiveness of these two networks was linearly correlated
(r = 0.46, p < 10−4 corrected, Figure S3), possibly because
the amount of relief one experiences when a stab is avoided
is related to how much empathy one has when watching a
stabbing.

Experiment 1: Are One’s Neural Responses
Modulated by the Religion of Another?
After the baseline block, the text label of each hand (e.g.,
“Hand #1”) was replaced with one of six religious affiliations
(Christian, Muslim, Hindu, Jewish, Scientologist, or atheist) for
the duration of the experiment (Figure 2A). A hand labeled
with a participant’s self-reported religion is referred to as the
ingroup condition, while the other religious beliefs comprise the
outgroup condition (Figure S1). Neural activation for ingroups
was significantly higher than for outgroups in the empathy
and relief networks when a participant saw the hands stabbed
or touched (p < 0.01 corrected for each, repeated measures
ANOVA, paired data, n= 67 participants, Figure 2B, Figures S4,
S5). We refer to this activation difference (averaged across stab
and touch conditions) as the “ingroup bias.”

Given that activation in empathy-associated regions has been
shown to correlate with psychometric measures and behavioral
outcomes (Singer, 2004; Singer et al., 2006), we investigated
whether the ingroup bias might correlate similarly with self-
reported empathy. Participants’ ingroup bias in the empathy
network were positively correlated with their scores on the
Balanced Emotional Empathy Scale (BEES) (Mehrabian, 1997)
(r = 0.29 [0.09, 0.47], p = 0.03 corrected, Figure 2C). This bias
likely is driven by a positive correlation of BEES (BF = 7.5
substantial) with the ingroup response and a negative correlation
with the outgroup response (BF= 21 very strong, Figure S6).

A whole brain contrast for ingroup>outgroup (each
combining stab and touch conditions) yielded three ROIs:
the medial prefrontal cortex (mPFC), posterior cingulate
cortex (PCC)/precuneus, and right posterior superior temporal
sulcus/temporoparietal junction (pSTS/TPJ) (Figure 2D).
These areas are involved in cognitive empathy (also known as
perspective-taking, theory of mind, or mentalizing) (Preckel
et al., 2018); we refer to them collectively as the mentalizing
network (Mitchell et al., 2005; Zaki et al., 2012). There were
no significant voxels in the contrast outgroup>ingroup. The
empathy and mentalizing networks we localized are highly
consistent with previous findings (Zaki et al., 2012) and their
interplay has been well documented (Hooker et al., 2008;
Schnell et al., 2011; Christov-Moore et al., 2017) (Figure S7).
Group distinctions, therefore, may rely on mental simulation
that is more involved for ingroup members than for outgroup
members.

Does Activity Distinguish Religious
Ingroups From Outgroups?
We used average activation in each of the non-visual regions
(Figure S8) of the empathy and relief networks (Figure 1B)
in a logistic regression to distinguish ingroup from outgroup.
A univariate model, using the average activation of the
empathy network, discriminated the ingroup conditions
(stab and touch) from the outgroup conditions (stab and
touch) with an accuracy of only 60%. A multivariate model,
however, discriminated the ingroup conditions (stab and
touch) from the outgroup conditions (stab and touch) with
a receiver operator characteristic (ROC) area under the
curve (AUC) of 68%, which was significantly different from
chance (p < 0.01, n = 268 instances, Figure 3A). This model
distinguished ingroup from outgroup correctly for 72% of
participants (n = 67). Including all other non-visual brain
regions as features yielded similar results (AUC = 69%,
participant accuracy = 70%, Figure S9). Removing empathy-
associated regions from this expanded classification, however,
decreased discriminability (AUC = 57%, p = 0.21). Although
specific to this classifier, these results putatively demonstrate
that the empathy, relief, and mentalizing networks may be
both sufficient and necessary to distinguish ingroup from
outgroup.

Interestingly, the classifier in Figure 3A correctly
distinguished the ingroup and outgroup conditions in all
participants who self-identified as atheist, suggesting the bias
is not so much about religion as about affiliation. Participants’
self-reported certainty of their belief (on a scale from 0 to 3)
correlated significantly with classifier prediction confidence (r
= 0.25 [0.07, 0.41], p = 0.048 corrected, Figure 3B). In other
words, a person’s certainty in their group’s principles relates to
the ease of classifying their ingroup from neural data.

Does Our Religious-Ingroup Classification
Model Generalize?
To test the validity and generality of our classifier (ingroup
vs. outgroup), we conducted two validation experiments using

Frontiers in Human Neuroscience | www.frontiersin.org 7 July 2018 | Volume 12 | Article 302

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Vaughn et al. Empathic Neural Responses Predict Allegiance

modified versions of Experiment 1 and 28 independent
participants.We retrained the classifier on the Experiment 1 data,
this time additionally including the mentalizing network ROIs
as features (the validation classifications were independent of the
derivation of the mentalizing network) (Figure 3C).

At the beginning of Experiment 2, hand labels were distributed
evenly and randomly between two “teams” that were said to
be at war (Figure 3D top). The two outgroups on the same
team as the ingroup were defined as the ally group (Figure S1).
Our classifier discriminated the ally conditions from outgroup
conditions with an AUC of 65% (p < 0.05 corrected, n = 56
instances), corresponding to accurate condition identification in
64% of participants (n= 14, Figure 3E pink).

In Experiment 3, participants were assigned randomly (by
a coin flip by the participant) to the Augustinian or Justinian
team. They were then given a bracelet with their team name,
and informed that the Augustinians and Justinians were two
warring tribes. Hands were labeled as Augustinian or Justinian
(Figure 3D bottom). The hand labeled with the participant’s
own team defined the arbitrary ingroup condition, while the
opposing team’s hand defined the arbitrary outgroup condition
(Figure S1). Our classifier discriminated the arbitrary ingroup
conditions from arbitrary outgroup conditions with an AUC of
70%, which was significantly different from chance (p < 0.05
corrected, n = 56 instances), corresponding to the accurate
condition identification in 71% of participants (Figure 3E
maroon).

DISCUSSION

The ingroup bias (difference between ingroup and outgroup
empathic response) was elicited by the simple difference in a
single-word text label on a hand, without any interpersonal
interaction or additional information. These findings are
consistent with the behavioral results of minimal group
theory: that ingroup/outgroup discrimination occurs in the
presence of even minimally-differentiating information (Tafjel
and Turner, 1979). Additionally, our results provide spatial
localization to an effect demonstrated in a recent EEG paper,
which found an event-related potential (ERP) difference in
the frontal lobe between religious ingroups and outgroups,
using only Christians and atheist participants (Huang and Han,
2014).

Our correlational data suggest this bias stems from an increase
in neural response for ingroup stimuli, and a decrease in
response for outgroup stimuli. While initially counterintuitive,
this result—that participants who consider themselves more
empathic show a larger ingroup bias—might be explained by
ambiguity in the BEES’ hypotheticals. In questions, such as “it
would be extremely painful for me to have to convey very bad news
to another,” the BEES test does not define who the other person
is. When answering empathy-related questions, participants may
not imagine a nondescript person, but instead, by default, a
member of their ingroup. Thus, it may not be surprising to find
a positive relationship between self-reported empathy for one’s
own ingroup and a neural correlate of that bias.

The results of experiments 2 and 3 suggest that an ingroup bias
can be extended or generated arbitrarily. In Experiment 2, neural
activation to outgroup religions on the ingroup member’s team
was more like activation in response to the ingroup. Experiment
3 demonstrates that group distinctions can be manufactured
arbitrarily, as neural differences were present after a visibly
random group assignment. The behavioral implications of these
results are consistent with findings that ingroup distinctions
can be modified flexibly and created arbitrarily on the basis of
eye-color (Byrnes and Kiger, 1990), assigned role (Haney et al.,
1972), mutual experience (Sherif, 1961), and perceived similarity
(Ruckmann et al., 2015).

Our results shed light on a recent finding that responses
typically thought of as empathic in nature, maybe instead
be attributable to a sense of body ownership (Bucchioni
et al., 2016). Note that the hands in our present experiment
were displayed upside-down (a third-person perspective),
yet we still observed a response in well-established empathy-
related regions. While our results do not rule out a role
for ownership in response, they preclude ownership-
dependent modulation that often accompanies a first-person
perspective.

Human allegiances often are more complex than a binary
classification between ingroups and outgroups. Nonetheless,
empathy regions allow for the classification of long-held,
newly-modified and arbitrarily-formed ingroups and outgroups.
This is the first report of a single machine learning model on
neural activation that generalizes to multiple representations
of ingroup and outgroup. Our multivariate analysis performed
similarly on atheist participants and generalized to flexible
and arbitrary teams, suggesting that our classifier is not
specific to religion. Instead, we interpret our findings as
evidence of brain activity differences based on group affiliation.
We did not have sufficient data to make a statistically-
significant inference regarding the degree to which participants
perceived other religions as more or less related to their
own (e.g., would a Christian participant respond more
empathically to a Jewish-labeled hand than an atheist-labeled
hand?).

Using a single, group-level machine learning model—rather
than individually-specific models—to predict ingroup/outgroup
affiliations might have reduced our classification accuracy by
ignoring the nuances of each participant’s spatio-functional brain
organization. However, our model offers distinct advantages in
both interpretability and applicability. Our model can be applied
immediately to additional participants and similar paradigms
without first needing to acquire data with which to train
the parameters of a participant-specific classifier. Although
it is tempting to interpret the biological meaning of brain
regions found to be significant features in our multivariate
model (Figure 2C), we do not; Haufe and colleagues have
demonstrated clearly that, in most cases, classifier weights cannot
be interpreted individually (Haufe et al., 2014). The utility from
the classification portion of this experiment lies in predictions
only.

Bolstered by recent TMS results suggesting a causal link
between mentalizing regions, religious beliefs, and empathic
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behavior (Holbrook et al., 2016; Christov-Moore et al., 2017), our
present paradigm and classifier may prove useful as an objective
diagnostic tool to measure the magnitude of one’s ingroup biases
(e.g., political party, gender, race). It might therefore prove useful
for measuring the efficacy of different interventional programs to
reduce the bias between ingroup and outgroup.
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